p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C23.73C24, C22.132C25, C42.115C23, C24.149C23, C4.1602+ (1+4), C22.152+ (1+4), (D42)⋊22C2, D4⋊5D4⋊34C2, Q8⋊6D4⋊27C2, (C4×D4)⋊66C22, (C4×Q8)⋊63C22, C23⋊3D4⋊14C2, C4⋊1D4⋊26C22, C4⋊C4.320C23, C4⋊D4⋊39C22, (C2×C4).122C24, (C2×C42)⋊71C22, C22≀C2⋊16C22, (C2×D4).324C23, C4.4D4⋊91C22, (C22×D4)⋊46C22, C22⋊C4.47C23, C22⋊Q8⋊101C22, (C2×Q8).465C23, C42.C2⋊65C22, C42⋊2C2⋊43C22, C22.29C24⋊31C2, C22.54C24⋊9C2, C42⋊C2⋊60C22, (C22×C4).392C23, C2.61(C2×2+ (1+4)), C22.D4⋊62C22, C22.34C24⋊21C2, C23.36C23⋊46C2, C22.53C24⋊21C2, (C2×C4⋊1D4)⋊29C2, (C2×C4○D4)⋊49C22, (C2×C22⋊C4)⋊62C22, SmallGroup(128,2275)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 1212 in 630 conjugacy classes, 384 normal (16 characteristic)
C1, C2, C2 [×2], C2 [×14], C4 [×4], C4 [×16], C22, C22 [×2], C22 [×54], C2×C4 [×2], C2×C4 [×16], C2×C4 [×26], D4 [×68], Q8 [×4], C23, C23 [×12], C23 [×28], C42 [×2], C42 [×6], C22⋊C4 [×44], C4⋊C4 [×20], C22×C4, C22×C4 [×18], C2×D4 [×54], C2×D4 [×28], C2×Q8 [×2], C4○D4 [×8], C24 [×8], C2×C42, C2×C22⋊C4 [×4], C42⋊C2 [×4], C4×D4 [×14], C4×Q8 [×2], C22≀C2 [×24], C4⋊D4 [×42], C22⋊Q8 [×2], C22.D4 [×20], C4.4D4 [×6], C42.C2 [×2], C42⋊2C2 [×4], C4⋊1D4 [×2], C4⋊1D4 [×10], C22×D4 [×14], C2×C4○D4 [×4], C23.36C23 [×2], C2×C4⋊1D4, C23⋊3D4 [×4], C22.29C24 [×4], C22.34C24 [×4], D42, D42 [×4], D4⋊5D4 [×4], Q8⋊6D4 [×2], C22.53C24, C22.54C24 [×4], C22.132C25
Quotients:
C1, C2 [×31], C22 [×155], C23 [×155], C24 [×31], 2+ (1+4) [×6], C25, C2×2+ (1+4) [×3], C22.132C25
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=g2=1, e2=b, f2=a, ab=ba, dcd=gcg=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece-1=fcf-1=bc=cb, ede-1=bd=db, be=eb, bf=fb, bg=gb, dg=gd, ef=fe, eg=ge, fg=gf >
(1 15)(2 16)(3 13)(4 14)(5 17)(6 18)(7 19)(8 20)(9 26)(10 27)(11 28)(12 25)(21 32)(22 29)(23 30)(24 31)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 22)(2 21)(3 24)(4 23)(5 25)(6 28)(7 27)(8 26)(9 20)(10 19)(11 18)(12 17)(13 31)(14 30)(15 29)(16 32)
(1 5)(2 8)(3 7)(4 6)(9 21)(10 24)(11 23)(12 22)(13 19)(14 18)(15 17)(16 20)(25 29)(26 32)(27 31)(28 30)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 18 15 6)(2 19 16 7)(3 20 13 8)(4 17 14 5)(9 29 26 22)(10 30 27 23)(11 31 28 24)(12 32 25 21)
(9 26)(10 27)(11 28)(12 25)(21 32)(22 29)(23 30)(24 31)
G:=sub<Sym(32)| (1,15)(2,16)(3,13)(4,14)(5,17)(6,18)(7,19)(8,20)(9,26)(10,27)(11,28)(12,25)(21,32)(22,29)(23,30)(24,31), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,22)(2,21)(3,24)(4,23)(5,25)(6,28)(7,27)(8,26)(9,20)(10,19)(11,18)(12,17)(13,31)(14,30)(15,29)(16,32), (1,5)(2,8)(3,7)(4,6)(9,21)(10,24)(11,23)(12,22)(13,19)(14,18)(15,17)(16,20)(25,29)(26,32)(27,31)(28,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,18,15,6)(2,19,16,7)(3,20,13,8)(4,17,14,5)(9,29,26,22)(10,30,27,23)(11,31,28,24)(12,32,25,21), (9,26)(10,27)(11,28)(12,25)(21,32)(22,29)(23,30)(24,31)>;
G:=Group( (1,15)(2,16)(3,13)(4,14)(5,17)(6,18)(7,19)(8,20)(9,26)(10,27)(11,28)(12,25)(21,32)(22,29)(23,30)(24,31), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,22)(2,21)(3,24)(4,23)(5,25)(6,28)(7,27)(8,26)(9,20)(10,19)(11,18)(12,17)(13,31)(14,30)(15,29)(16,32), (1,5)(2,8)(3,7)(4,6)(9,21)(10,24)(11,23)(12,22)(13,19)(14,18)(15,17)(16,20)(25,29)(26,32)(27,31)(28,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,18,15,6)(2,19,16,7)(3,20,13,8)(4,17,14,5)(9,29,26,22)(10,30,27,23)(11,31,28,24)(12,32,25,21), (9,26)(10,27)(11,28)(12,25)(21,32)(22,29)(23,30)(24,31) );
G=PermutationGroup([(1,15),(2,16),(3,13),(4,14),(5,17),(6,18),(7,19),(8,20),(9,26),(10,27),(11,28),(12,25),(21,32),(22,29),(23,30),(24,31)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,22),(2,21),(3,24),(4,23),(5,25),(6,28),(7,27),(8,26),(9,20),(10,19),(11,18),(12,17),(13,31),(14,30),(15,29),(16,32)], [(1,5),(2,8),(3,7),(4,6),(9,21),(10,24),(11,23),(12,22),(13,19),(14,18),(15,17),(16,20),(25,29),(26,32),(27,31),(28,30)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,18,15,6),(2,19,16,7),(3,20,13,8),(4,17,14,5),(9,29,26,22),(10,30,27,23),(11,31,28,24),(12,32,25,21)], [(9,26),(10,27),(11,28),(12,25),(21,32),(22,29),(23,30),(24,31)])
Matrix representation ►G ⊆ GL8(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | -2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
-1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | -1 | 0 | 0 | 0 | 0 |
-1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
-1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
-1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
G:=sub<GL(8,Integers())| [-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-2,1,1,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[-1,0,1,-1,0,0,0,0,-2,1,1,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0],[-1,1,0,-1,0,0,0,0,-2,1,1,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0],[1,0,-1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1] >;
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | ··· | 2Q | 4A | 4B | 4C | 4D | 4E | ··· | 4T |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | 2+ (1+4) | 2+ (1+4) |
kernel | C22.132C25 | C23.36C23 | C2×C4⋊1D4 | C23⋊3D4 | C22.29C24 | C22.34C24 | D42 | D4⋊5D4 | Q8⋊6D4 | C22.53C24 | C22.54C24 | C4 | C22 |
# reps | 1 | 2 | 1 | 4 | 4 | 4 | 5 | 4 | 2 | 1 | 4 | 4 | 2 |
In GAP, Magma, Sage, TeX
C_2^2._{132}C_2^5
% in TeX
G:=Group("C2^2.132C2^5");
// GroupNames label
G:=SmallGroup(128,2275);
// by ID
G=gap.SmallGroup(128,2275);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,723,352,2019,570,136,1684]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=g^2=1,e^2=b,f^2=a,a*b=b*a,d*c*d=g*c*g=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=f*c*f^-1=b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations